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BOUNDED 3-MANIFOLDS ADMIT NEGATIVELY
CURVED METRICS WITH CONCAVE BOUNDARY

JOEL HASS

Abstract

A metric can be constructed on any 3-manifold with nonempty boundary
such that with respect to the metric the manifold has negative sectional
curvature and the boundary is concave. In particular, the 3-ball admits
such a metric.

Introduction

In this paper we construct a metric on any 3-manifold with boundary
such that with respect to the metric the manifold has negative sectional
curvature and the boundary is concave outwards. In particular, we con-
struct such a metric on the 3-ball. This is surprising for several reasons.

Firstly, such a construction cannot be carried out in two dimensions.
The Gauss-Bonnet theorem implies that the boundary of a negatively
curved 2-disk is somewhere convex.

Secondly, such a metric cannot be constructed with constant negative
sectional curvature. This contrasts with the recurrent theme in low-dimen-
sional topology that negatively curved manifolds behave similarly to hy-
perbolic ones. Thus Thurston’s geometrization conjecture states that a
closed 3-manifold admitting a metric of negative sectional curvature also
admits a hyperbolic metric, and Thurston has proved this for closed Haken
manifolds and for bounded manifolds with totally geodesic boundary [4].
By contrast, there is no hyperbolic metric on the ball whose boundary is
concave. Otherwise we could use the developing map [4] to immerse the
ball into H> under a local isometry. An extremal point of the image
would be a boundary point that could not be concave. Thus this construc-
tion can be viewed in some weak sense as giving negative evidence for the
geometrization conjecture.

This metric has other strange properties. It is not induced by an im-
mersion of the 3-ball into a complete negatively curved 3-manifold. The
interior of the ball contains a null-homotopic closed geodesic. By contrast,
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in a complete negatively curved manifold there is a unique geodesic in each
homotopy class.

The motivation for this construction was an attempt to generalize the
2z-theorem of Gromov and Thurston [1], which states that all but finitely
many Dehn fillings on a cusped hyperbolic 3-manifold yield a closed, neg-
atively curved 3-manifold. Cutting off a cusp of a hyperbolic 3-manifold
along a horospherical torus gives a concave boundary to the hyperbolic
manifold, and the metric can be extended over the solid torus added dur-
ing Dehn filling so as to preserve negative curvature. The results of this
paper show that the solid torus, like a hyperbolic manifold truncated along
a cusp, admits a metric with negative sectional curvature and concave
boundary. But all of the infinitely many Dehn fillings on the solid torus
yield manifolds which do not admit a metric of negative sectional curva-
ture. Thus the 2z-theorem does not generalize from the hyperbolic setting
to the setting of variable negative curvature.

The paper is organized so as to first construct a metric on the 3-ball with
negative sectional curvature and concave boundary, and then generalize the
construction to obtain such metrics on arbitrary bounded 3-manifolds.

Construction of the metric on the 3-ball

The idea of the construction is to take a suitable hyperbolic manifold
with totally geodesic genus-two boundary and to add two 2-handles to ob-
tain a 3-ball. Pushing in the totally geodesic boundary slightly gives a
concave boundary. ‘The 2-handles can then be made to have a compat-

“ible negatively curved metric if the attaching curves are sufficiently long
geodesics.

Lemma 1. There is a 3-manifold X, obtained by removing an arc from
T?x {0} to T*x{1} in T*xI, which is hyperbolic and has totally geodesic
boundary.

Proof. An arc running from T2 x {0} to 7> x {1} whose complement
is boundary incompressible, anannular, and atoroidal exists by the results
of Meyers [2], [3]. Lét X be the manifold obtained by removing a small
open neighborhood of this arc. The double of X is a closed atoroidal
3-manifold, and admits a hyperbolic metric by Thurston’s geometrization
theorem for Haken manifolds. This manifold has an isometric involution
preserving d.X . It follows that X is totally geodesic, proving the lemma.

In Example 1 we will give a more direct construction of a hyperbolic
manifold with all the properties we need. This construction avoids the
need to apply the less constructive results of [2], [3].
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Let ¢ > O be a constant such that the boundary X of X admits
a collar neighborhood of width ¢ (& can be chosen to depend only on
the genus of 9.X, but for our purposes any ¢ > 0 will do). Let X, be
the submanifold obtained from X by removing an ¢-neighborhood of
the boundary of X . Then 9X, is a concave surface of constant normal
curvature. Let K(¢) be the normal curvature of dX,, so that K(0) =0
and K(¢) >0 for ¢ > 0. K(g) is also the normal curvature of the surface
in H>. which is at constant distance ¢ from a hyperbolic plane.

We now examine what happens when a 2-handle is added to X . Let m

.be a closed curve on 84X, which is a meridian of the arc removed from
T>x 1. 8X is cut by m into two punctured tori, 7; and 7,.

Lemma 2. Any 2-handle addition to X along a non-separating curve
in T, gives a solid torus. For any one of these, infinitely many distinct
2-handle additions along curves in T, give rise to a 3-ball.

Proof. Compressing a punctured torus yields a 2-sphere. Thus any 2-
handle addition along a non-separating curve in 7, gives a manifold X !
with a single torus as boundary. One way of constructing X’ is to first
take T2 x I , add a 2-handle to get a solid torus with a ball removed,
and then remove an arc connecting the torus boundary component to the
sphere boundary component. Such a construction always produces a solid
torus.

Adding a second 2-handle to T, will in general give rise to a punctured
lens space. However an infinite number of distinct 2-handles yield a ball,
namely those where the attaching curve consists of one longitude and any
number of meridians.

We now show that the 2-handle addition can be carried out with suitable
control of the metrics. We construct a metric on the attaching 2-handles
which is negatively curved, hyperbolic near the 2-handle boundary, and
suitably concave. We begin by constructing a metric on the core of the
2-handle.

Lemma 3. Given a positive constant K (&) there is a constant L, > 0
such that a disk D whose boundary has length(dD) > L, admits a smooth
metric h satisfying:

1. D is hyperbolic in a neighborhood of 6D,
2. D is negatively curved everywhere,
3. 8D is convex with constant normal curvature K (g).

Proof We take polar coordinates (r, @) on D and a metric of the
form h = dr* + f 2(r) de? , where f is a function defined as follows. Fix
& > 0 and pick a constant a € R and a smooth function f(r) so that:
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1. f:[0,a+¢&}— R,

2. f(0)=0,

3. f(r) =csinh(r) for r €0, €],

4. f(ry=cosh(r—a) for refa+¢/2, a+¢],

5. f"(r)>0 forall r (ie., f is convex).
The existence of such an f for large enough a follows immediately from
Figure 1.

A calculation using Cartan’s method of moving frames shows that the
resulting curvature of the disk is given by —f”/f, r > 0. Explicitly, take
orthonormal 1-forms

w'=dr, @ = f(r)do.

Then
do' =0= —a)l2 A
and
do’ = f'drade=f'/fo' No = -0® | A",
So

a)12=—f'/fa)2, dw12=—f"/fa)1/\a)2.

The sectional curvature is given by —f"/f, so this metric on the disk
has negative curvature, equal to —1 near r = 0 and near 8D . The metric
has a singularity at » = 0 with cone angle 2nc. An appropriate branching
gives a nonsingular metric on the disk with cone angle 2z . The boundary
length then multiplies by 1/c. Although the construction of f is restricted
in that there is an upper bound to which value of ¢ can be chosen, there
is no lower bound, so that we can pick the cone angle to be anything less
than some fixed constant ¢,. As a result we can branch appropriately to
get an arbitrary boundary length larger than some constant L, . The metric
near a totally geodesic submanifold of a hyperbolic manifold has the form
dr* + cosh’ rdx> , where r measures the distance from the submanifold,
and dx? isthe hyperbolic metric on the submanifold (these are sometimes
called Fermi coordinates). As a result the metric near the boundary of the
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disk is the same as the metric on a hyperbolic surface at distances between
¢/2 and ¢ from a geodesic.

We now extend this metric to a 3-dimensional 2-handle.

Lemma 4. Given D as in Lemma 3, there is a metric on D x I such
that

1. D x I is hyperbolic in a neighborhood of 8D x I,

2. D x I is negatively curved everywhere,

3. 3D x I is convex with constant normal curvature K(g),
4. D x 91 is concave. -

- Progf. We first consider D? x R with coordinates (r, 8) on D* and
p on R. Define the metric

g= dp2+cosh2ph = d,1)2+cosh2,1)a7r2 +cosh2pf2d02,

and calculate its curvature using moving frames.
Orthonormal 1-forms are

o' =dp, w® =coshpdr, @ = f cosh pdf

Differentiating gives

1 1 2 1 3
do =0=-0 , A0 ~w; N0,

do’ = sinh pdp Adr = (sin,o/coshp)w1 A’

= —wzlf\a)l—w23/\w3,

= fsinhpdpAd@ + fcoshpdrndb
_sinhp) 1 3 ! 2, 3
B (coshp)w ne +fcoshpw ne

3 1 3 2
=—(01/\(0 -—(02/\(0.

dw3

i ik
Set w}:a;kw . Then
1 2 1 3
O=w, A0 +tw ;A Aw
1 1 2 13 2 1 1 3 12 3
=a 5,0 A +a ;0 A0 +a 30 A0 +a 5,0 Ao,
1 11 1
soa21_0,a23—a32,a31_0,
11 2 1 3
W) =0a 0 +a 0,
11 2 1 3
W,=0a,,0 +a ;0 ,

2 2 1 2 2 2 3
W y=a 30 +a {0 +a 5,0,
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. 1 2 2 1 2 3
(sinp/coshp)w Aw' = -~ Aw -3 A®
12 1 13 1
=a,0 A0 +a ;0 Ao
21 3 2 2 3
—a 0 Ao —a ;0 Ao,

2 _ U 1 2
s0 a*;, =0, a,,=—sinhp/coshp, a ,; =—-a";,

w12 = — (sinh p/cosh p)” + ‘1123“’3 ’

t 1 2, 1 3
W3=0a 30 +a ;0 ,

2 1 1 23
Wi=—a,w +a3;;0,

(Sinhp)wl/\w} f 2.3

+ ——w Aw
cosh p fcosh p
3 1 1, 1
=~ l/\wl—w32/\w2=a23w2/\w +a 33co3/\co1

1 1 2 2 3 2
—a ,0 Ao +a ;0 Ao,

) al3‘3 = —(sinh p/ cosh p), az33 = —f"/(fcoshp), al23 =0, and

w12 = — (sinh p/ coshp)wz,

w13 = — (sinh p/ cosh p)a)3 ,
2 ' - 3

w 3= —(f [/fcoshp)w.

We now calculate Q=do+ow A w:

1

dw , = —d((sinh p/ cosh p)wz) = —d(sinh p dr)

= —coshpdpAdr= —o' /\wz,
dw', = — d((sinh p/ cosh p)w’) = —d(f(r) sinh p d6)

= — f'(rysinh pdr Ad6 — f(r)coshpdp A wd8

_ f(r)smthwz/\ws_wl/\w3,
f(r)cosh” p
2 _ f, 3 _ ! _ " .
dw3—d(mw>— d(f do)=—f"drnd8

= — 1" /(f cosh’ p)o* A,
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1 1 3 . . 3 f’ 3
= = — h — =
(WAw) , =0 A0, (sinh p/ cosh p)w Afcoshpw 0,
11 2 S 3
(WAw) ;= ,Aw ;= —(sinh p/cosh p)w” A f_——coshpw
_ smhp{ /\w3,
fcosh
(a)/\a))z3 = o’ /\a) 3= (s1nhp/coshp) —(sinh p/ cosh p)w
= —(smh p/cosh p)a) Ao ,
le =~ /\a)z,
le= ———f sml;p A’ -0 A
fcosh” p
f smhpw A
fcosh p
= —w're,
" : h2
Q= - (LS A,
fcosh“p  coshp
Now Qij = %Rijk,w’f/\wl, SO
1 1 2 7 sinth

Ryp,=-1, Ry=-1, Ryu= _fcosh2p costh'
Since f” and f are positive, all the sectional curvatures R’ ;; are nega-
tive. Moreover the metric is hyperbolic near » =0 and near D x R.

We now construct a submanifold ¥ of D x R with the following prop-
erties:

1. Y is homeomorphicto D x [-1, 1].

2. Dx{-1} and D x {1} are concave.

3. 8D x[~1, 1] is convex with constant normal curvature K(¢).

4. Dx{-1} and 8D x I are tangent at D x {—1}, and D x {1} and
8D x I are tangent at 9D x {1}.

We first arrange for property 2. Note that S' acts isometrically on
DxR,via a-(p,r,8) = (p,r,a+6), a € [0,21]. We identify
the orbit space O with the set of points § = 0. O sits inside Y as
a totally geodesic submanifold, and inherits the hyperbolic metric 4 p2 +
cosh® pd r’ . Each circle orbit with r > 0 has a curvature vector which is
invariant under the circle action. This gives a smooth equivariant vector
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FIGURE 2A ' FiGURE 2B

FIGURE 3

field on {D - (0, 0)} x R, which projects to a smooth vector field ¥ on
the interior of the orbit space, as depicted in Figure 3. At 8 =0, V is
tangent to D x {0) and points towards the center of this disk. As r — 0,
"V becomes perpendicular to the r = 0 axis. The direction of V', though
not its magnitude, is illustrated in Figure 3.

Let c,, ¢, bea pair of curves in O, each of which is convex outwards
and transverse to V' on int(0O), as in Figure 3. Construct surfaces of
revolution C; and C, by taking the S' orbits of ¢, and ¢,, and let W
be the compact submanifold of DxR cutoffby C,UC, . Since O is totally
geodesic, ¢; and c; are principle curves of C; and C, respectively. The
other principle curvature of C; and C, is the normal curvature of an

S'-orbit. This points outside W by construction, so that both principle
curvatures are outward pointing and C, and C, are concave. -

We now adjust W and C,,C, near D x R to obtain Y. W is
hyperbolic near D x R , and 6D X R has constant normal curvature K(¢)
in the @ direction, zero in the p direction. We construct the convex part
of &Y Dby taking the submanifold of W with constant normal curvature
K(¢) in every direction on 8D x I . Finally we adjust C, and C, so that
they meet the convex portion of 8Y smoothly, as illustrated in Figure 2b.

Theorem 1. Let M be a manifold which has negative curvature and
concave boundary. Suppose that v is a simple geodesic on the boundary
OM of M, length(y) > L,, and the metric on M -in a neighborhood of y
is hyperbolic with constant normal curvature K(¢). Then the manifold ob-
tained by attaching a 2-handle along y admits a negative curvature metric
which is concave at the boundary.
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Proof. The geodesic y has a J-neighborhood for some § > 0. The
2-handle in Lemma 4 can be constructed so that its width is arbitrarily
small, in particular less than J . Attaching the 2-handle along y gives the
desired metric.

Theorem 2. There exists a metric on a 3-dimensional ball B®> which
has negative sectional curvature and is concave at the boundary.

Proof. We take the manifold X (&) constructed in Lemma 1 and attach
a2-handleto T, along a curve of length > L . Theorem 1 implies that the
resulting solid torus has a negative sectional curvature metric with concave
boundary. In this metric the punctured torus T, in the boundary of the
solid torus has a neighborhood which is hyperbolic, has constant normal
curvature K(¢), and has a geodesic boundary curve corresponding to the
meridian m of the removed arc. It follows that there are geodesic curves
in T, which have arbitrarily long length such that adding a 2-handle along
any of these curves gives rise to a ball. Performing a 2-handle addition
along one of these curves and applying Theorem 1 proves Theorem 2.

Geodesics in a complete negative sectional curvature manifold are al-
ways homotopically nontrivial. In contrast, for bounded negative sectional
curvature manifolds we produce a closed null-homotopic geodesic con-
tained in the interior of the manifold. This is not possible in dimension
2.

Corollary 1. There exists a negative sectional curvature metric with con-
cave boundary on the 3-ball in which the interior of the ball contains a
null-homotopic closed geodesic.

Proof. Take a closed geodesic in the hyperbolic structure on X which
misses an g-neighborhood of #X . The metric in a neighborhood of this
curve is unchanged by the 2-handle additions.

Corollary 2. There exists a negative sectional curvature metric on the
3-ball which is not induced by an immersion into any complete negatively
sectional curved 3-manifold.

Proof. 1If so, then the complete negatively sectional curved 3-manifold
would contain a null-homotopic closed geodesic.

Construction of metrics on arbitrary bounded 3-manifolds

We next consider the question of what other manifolds admit negative
sectional curvature metrics with concave boundary. A construction similar
to the one of Lemma 1 shows that all 3-manifolds have such metrics.

Theorem 3. There exists a metric on any orientable 3-manifold with
nonempty boundary, which has negative sectional curvature and is concave
at the boundary.
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Proof. Case 1. M has a boundary component which is not a sphere.
Glue 3-balls to any spherical boundary components to get a manifold M,
possibly coinciding with A/ .  Remove an unknot K from a small ball
in int(M"), the interior of M'. Using Myers’ theorem, an arc « can be
found running from K to a boundary component of M such that the
complement X of an open neighborhood of K U« is boundary incom-
pressible, atoroidal, and anannular [2], [3]. X admits a hyperbolic metric
with X consisting of horotori and totally geodesic surfaces. Push the to-
tally geodesic surfaces in slightly to get concave boundary. Infinitely many
distinct surgeries on K give rise to a manifold homeomorphic to M’ .
Choosing a sufficiently long surgery curve, as in Theorem 1, gives a metric
with negative sectional curvature concave boundary on M’ . Removing
small balls if necessary, we obtain such a metric on M .

Case 2. M has only 2-sphere boundary components. Glue 3-balls to any
spherical boundary components to get a closed manifold M . Remove a
two-component unlink from a small ball contained in A’ (a Hopf link
would also serve, as-it did for the case of a 3-ball). Using Myers’ theo-
rem, remove an arc running from one of the components of this link to
the other, so that the complement X of an open neighborhood of the re-
sulting graph is boundary incompressible, atoroidal and anannular. This
manifold X admits a hyperbolic metric with @.X a totally geodesic, genus- -
2 surface. Push the boundary in slightly to get concave boundary. Just as
before, infinitely many distinct pairs of Dehn surgeries on each component
of the original unlink give rise to a manifold homeomorphic to M’ — {B .
Choosing sufficiently long curves, as in Theorem 1, gives a metric with neg-
ative sectional curvature and concave boundary on M’ — {B3} . Removing
more balls if necessary, we obtain a manifold homeomorphic to M .

Example 1. We give here a specific example of a manifold X which
is hyperbolic, has totally geodesic genus-2 boundary, and such that on
O0X there are curves ¢, ¢, of arbitrarily long length with the property
that adding 2-handles along ¢, and c2 gives a 3-ball. Take X to be the
complement of the handlebody in s depicted in Figure 4. Thurston has
observed that the complement of this handlebody can be decomposed into
two truncated regular hyperbolic tetrahedra so as to have totally geodesic
boundary [4]. By adding a 2-handle to a meridian of this handlebody, as
indicated in Figure 4, one obtains a solid torus in S® . Addition of another
2-handle then gives a 3-ball. Note that many more pairs of curves also yield
B? , as one can do “handle slides™, i.e., given two curves, replace one of
them by parallel copies of each connected by an arc in their complement.
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glue meridian here

FiGURE 4

This process enables us to choose the attaching curves of the two handles
arbitrarily long. Applying Theorem 1 gives the conclusion.

Question. Does every n-manifold with boundary admit a metric which
has negative sectional curvature and is concave at the boundary, n > 3?7
In particular, does the n-ball?
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